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Computational Methods
for Sparse Solution of Linear Inverse Problems

Joel A. Tropp and Stephen J. Wright

Abstract—In sparse approximation problems, the goal is to find
an approximate representation of a target signal using a linear
combination of a few elementary signals drawn from a fixed
collection. This paper surveys the major algorithms that are used
for solving sparse approximation problems in practice. Specific
attention is paid to computational issues, to the circumstances
in which individual methods tend to perform well, and to the
theoretical guarantees available. Many fundamental questions in
electrical engineering, statistics, and applied mathematics can
be posed as sparse approximation problems, which makes the
algorithms discussed in this paper versatile tools with a wealth
of applications.

Index Terms—sparse approximation, compressed sensing,
matching pursuit, convex optimization

I. INTRODUCTION

INEAR inverse problems arise throughout engineering

and the mathematical sciences. In most applications,
these problems are ill-conditioned or underdetermined, so
we must apply additional regularizing constraints in order to
obtain interesting or useful solutions. The last two decades
have witnessed an explosion of interest in regularization via
sparsity constraints. That is, we seek approximate solutions
to linear systems where the unknown has few nonzero entries
relative to its dimension:

Find sparse  such that Pz =~ u,

where w is a target signal and ® is a known matrix.
Generically, this formulation is referred to as sparse approx-
imation [1]. These problems arise in many areas, including
statistics, signal processing, machine learning, coding theory,
and approximation theory. Compressive sampling refers to a
specific type of sparse approximation problem first studied
in [2], [3].

Tykhonov regularization, the classical device for solving
linear inverse problems, controls the energy of the unknown
vector (i.e., the Euclidean norm). This approach leads a linear
least-squares problem whose solution is generally nonsparse.
To obtain sparse solutions, we must develop more sophis-
ticated algorithms and—often—commit more computational
resources. The effort pays off. Recent research has demon-
strated that, in many cases of interest, there are algorithms
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that can correctly solve large sparse approximation problems
in reasonable time.

In this paper, we give an overview of algorithms for sparse
approximation, describing their computational requirements
and the relationships between them. We also discuss the
types of problems where each method is most effective in
practice. Finally, we sketch the theoretical results that justify
the application of these algorithms.

Subsection I-A describes “ideal” formulations of sparse
approximation and some common features of algorithms for
approaching these problems. Section II provides additional
detail about greedy pursuit methods. Section III presents
formulations based on convex optimization and algorithms for
solving these convex programs. Finally, Section IV surveys
some new horizons worth exploring.

A. Formulations

Suppose that ® € R™*¥ is a real matrix whose columns
have unit Euclidean norm: ||¢;|ls = 1 for j = 1,2,...,N.
(The normalization does not compromise generality.) This
matrix is often referred to as a dictionary. The “entries” in
the dictionary are the columns of the matrix, and a column
submatrix is called a subdictionary.

The counting function || - ||o : R™Y — R returns the number
of nonzero components in its argument. We say that a vector x
is s-sparse when ||z|o < s. When u = ®x, we refer to x as
a representation of the signal u with respect to the dictionary.

The most basic problem we consider is to produce a
maximally sparse representation of an observed signal u:

min ||z|lg subject to Pz = u. (1)
x

One natural variation is to relax the equality constraint to allow
some error tolerance € > 0, in case the observed signal is
contaminated with noise:

min ||zl subject to || Px —ul2 <e. (2)
x

It is most common to measure the prediction—observation
discrepancy with the Euclidean norm, but other metrics may
also be appropriate.

The elements of (2) can be combined in several ways to
obtain related problems. For example, we can seek the minimal
error possible at a given level of sparsity s > 1:

min | ®x — ulls  subject to ||x]jo < s. 3)
xr

We can also use a parameter A > 0 to balance the twin
objectives of minimizing both the error and the sparsity:

1
min 2 | B2 — wll} + Alz]o.
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If there are no restrictions on the dictionary ® and the
signal u, then sparse approximation is at least as hard as
a general constraint satisfaction problem. Indeed, for fixed
constants C, K > 1, it is NP-hard to produce a (C's)-sparse
approximation whose error lies within a factor K of the
minimal s-term approximation error [4, Sec. 0.8.2].

Nevertheless, over the last decade, researchers have identi-
fied many interesting classes of sparse approximation prob-
lems that submit to computationally tractable algorithms.
These striking results help to explain why sparse approxima-
tion has such an important and popular topic of research in
recent years.

B. Structured Sparse Models

Sparse approximation has become increasingly important
as it has become clear that sparsity constraints are pervasive.
Here, we focus on how sparse models affect the efficiency
of algorithms. For more details on sparse modeling, see other
papers in this volume.

Researchers in mathematical signal processing have demon-
strated convincingly that many naturally occurring signals are
sparse with respect to dictionaries that can be constructed with
methods from harmonic analysis [S]. For example, natural
images can be approximated with relatively few wavelet
coefficients. As a consequence, in many sparse approximation
problems, the dictionary ® has tremendous structure and offers
fast matrix—vector multiplications.

In compressive sampling, we typically view & as the
product of a random observation matrix and a fixed orthogonal
matrix that determines a basis in which the signal is sparse.
For large-scale compressive sampling problems, it is essential
that the observation matrix and sparsity basis both admit an
efficient matrix—vector multiply, or else algorithms will be
hopelessly slow.

C. Major Algorithmic Approaches

There are five major classes of computational techniques for
solving sparse approximation problems:

1) Greedy pursuit. Iteratively refine a sparse solution by
successively identifying one or more components that
yield the greatest improvement in quality [6].

2) Convex relaxation. Replace the combinatorial problem
with a convex optimization problem. Solve the convex
program with algorithms that exploit the problem struc-
ture [1].

3) Bayesian methods. Assume a prior distribution for the
unknown coefficients that favors sparsity. Develop a
maximum a posteriori estimator that incorporates the
observation. Identify a region of significant posterior
mass [7] or average over most-probable models [8].

4) Nonconvex optimization. Relax the ¢, problem to a
related nonconvex problem and attempt to identify a
stationary point [9].

5) Brute force. Search through all possible support sets,
possibly using cutting-plane methods to reduce the num-
ber of possibilities [10, Sec. 3.7-3.8].

This article focuses on greedy pursuits and convex opti-
mization. These two methods have the advantages that they
are computationally practical and lead to provably correct
solutions under well-defined conditions. Bayesian methods and
nonconvex optimization are based on sound principles, but
they do not currently offer theoretical guarantees. Brute force
is, of course, algorithmically correct, but it remains plausible
only for small-scale problems.

D. Verifying Correctness

Researchers have identified several tools which can be used
to prove that sparse approximation algorithms produce optimal
solutions to sparse approximation problems. These ideas also
have an impact on the efficiency of computational algorithms,
so the theoretical background merits a summary.

The uniqueness of sparse representations is equivalent to an
algebraic condition on submatrices of ®. Suppose a signal u
has two different s-sparse representations x; and xo. Clearly,
we have

u=®x =Pry; — P(x;—x2)=0.

In words, ® maps a nontrivial (2s)-sparse signal to zero. It
follows that s-sparse representations are unique if and only if
each (2s)-column submatrix of ® is injective.

To ensure that sparse approximation is computationally
tractable, we need stronger assumptions on ®. Not only should
sparse signals be uniquely determined, but they should be sta-
bly determined. Consider a signal perturbation Au and an s-
sparse coefficient perturbation Az, related by Au = ®(Ax).
Stability requires that ||Ax||> and ||Awu||2 are comparable.

This property is commonly imposed by fiat. We say that
the matrix @ satisfies the restricted isometry property (RIP)
of order K with constant 6 = 0x < 1 if

lzllo < K = (1—8)|l3 < [[@x]3 < (1 +0)|=l3.

This concept was introduced in the important paper [11]. For
sparse approximation, we hope (4) holds for large K.

The RIP can be verified using the coherence statistic of the
matrix ®, which is defined as

u:r]n;gd(%cpk)\-

An elementary argument [12] via Gershgorin’s circle theorem
establishes that the RIP constant x < pu(K — 1). In signal
processing applications, it is common that y ~ m~/2, so we
have nontrivial RIP bounds for K ~ \/m. Unfortunately, no
known deterministic matrix yields a substantially better RIP.
Early references for coherence include [6], [13].

Certain random matrices, however, satisfy much stronger
RIP bounds with high probability. Gaussian matrices,
Bernoulli matrices, and random sections of Fourier matrices
typically satisfy RIP when K ~ m/log?(N) for a small
integer p. This fact explains the benefit of randomness in
compressive sampling. Establishing the RIP for a random
matrix requires techniques more sophisticated than the simple
coherence arguments. See [11] for discussion.

Recently, researchers have observed that sparse matrices
may satisfy a related property, called RIP-1, even when they
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do not satisfy (4). RIP-1 can also be used to analyze sparse
approximation algorithms. See [14] for details.

E. Key Cross-Cutting Issues

Structural properties of the matrix ® have a substantial
impact on the implementation of sparse approximation algo-
rithms. In most applications of interest, the large size or lack
of sparseness in ® makes it impossible to store this matrix (or
any substantial submatrix) explicitly in computer memory. It is
often the case, however, that matrix—vector products involving
® and ®* can be performed efficiently. For example, the
cost of these products is O(N log N) when @ is constructed
from Fourier or wavelet bases. For algorithms that solve least-
squares problems, a fast multiply is particularly important
because it allows us to use iterative methods such as LSQR
or conjugate gradient (CG). Nevertheless, all the algorithms
discussed below can be implemented in a way that requires
access to ® only through matrix—vector products.

Spectral properties of subdictionaries, such as those en-
capsulated in (4), have additional implications for the com-
putational cost of sparse approximation algorithms. In par-
ticular, many methods exhibit fast asymptotic convergence
because the RIP ensures that the subdictionaries encountered
during execution have superb conditioning. This point is most
evident with algorithms that solve least-squares problems
iteratively because LSQR and CG are most efficient with well-
conditioned matrices. Other approaches (for example, interior-
point methods) are less sensitive to spectral properties, so they
become more competitive when the RIP is less pronounced or
the target signal is not particularly sparse.

II. PURSUIT METHODS

A pursuit method for sparse approximation is a greedy
approach that iteratively refines the current estimate for the
coefficient vector by modifying one or several coefficients
that yield a substantial improvement in approximating the
signal. We begin with a description of the simplest effec-
tive greedy algorithm, orthogonal matching pursuit (OMP),
and its theoretical guarantees. Afterward, we outline a more
sophisticated method, called CoSaMP, and its theory. We
conclude with some general comments about the role of greedy
algorithms in sparse approximation.

A. Orthogonal Matching Pursuit

Orthogonal matching pursuit is one of the earliest methods
for sparse approximation. The basic references in the signal
processing literature are [15], [16], but the idea can be traced
to 1950s work on variable selection in regression [10].

Figure 1 contains a mathematical description of OMP. The
symbol ®( denotes the subdictionary indexed by a subset
Qc{1,2,...,N}L

In a typical implementation of OMP, the identification step
is the most expensive part of the computation. The most
direct approach computes the maximum inner product via the
matrix—vector multiplication ®*rj,_1, which costs O(mN') for
an unstructured dense matrix. Some authors have proposed

Fig. 1. Orthogonal Matching Pursuit (OMP)

o Input. A signal u € R™, a matrix & € R™*¥
o Output. A sparse coefficient vector © € RY

1) Initialize. Set the index set Qg = @, the residual
Tro = U, and put the counter k£ = 1.

2) Identify. Find a column nj of ® that is most strongly
correlated with the residual:

ng € argmax, [(rp_1,®n)| and

Q=1 U {nk}

3) Estimate. Find the best coefficients for approximat-
ing the signal with the columns chosen so far.

x, = argminy ||lu — Po, Y2
4) Iterate. Update the residual:
T =U — q’gkwk.

Increment k. Repeat (2)—(4) until stopping criterion
holds.

5) Output. Return the vector x with components
z(n) = zx(n) for n € Q) and x(n) = 0 otherwise.

using nearest-neighbor data structures to perform the identi-
fication query more efficiently [17]. In certain applications,
such as ridge regression, the “columns” of ® are indexed by
a continuous parameter, and identification can be posed as a
low-dimensional optimization problem.

The estimation step requires the solution of a least-squares
problem. The most common technique is to maintain a QR
factorization of ®g,, , which has a marginal cost of O(mk) in
the kth iteration. The new residual rj is a by-product of the
least-squares problem, so it requires no extra computation.

There are several natural stopping criteria.

o Halt after a fixed number of iterations: k£ = s.

« Halt when the residual has small magnitude: ||rg|2 < e.

o Halt when no column explains a significant amount of
energy in the residual: [|®*r;_1]|c < €.

These criteria can all be implemented at minimal cost.

As with other algorithms, OMP can take advantage of
a dictionary that offers a fast matrix—vector product; see
Section I-E.

A huge number of related greedy pursuit algorithms have
been proposed in the literature; we cannot do them justice
here. Some noteworthy variants include matching pursuit [6],
the relaxed greedy algorithm [18], and the ¢;-penalized greedy
algorithm [19].

B. Guarantees

OMP produces the residual r,,, = 0 after m steps (provided
that the dictionary can represent the signal u exactly), but this
representation hardly qualifies as sparse. Classical analyses of
greedy pursuit focus instead on the rate of convergence.
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Greedy pursuits often converge linearly with a rate that
depends on how well the dictionary covers the sphere [6].
For example, OMP offers the estimate

[7kll2 < (1= 0*)*? |ull2,
0 = inf |y |,—1 sup,, [(v, @n)|.

where

See [16, Sec. 3] for details. Unfortunately, the covering param-
eter o is O(m~'/?) unless N = O(e™). Since p is typically
quite small, this type of result has limited interest.

A second type of result demonstrates that the rate of
convergence depends on how well the dictionary expresses the
signal of interest [18, Eqn. (1.9)]. For example, OMP offers
the estimate

Irkllz < &7V? |ulle, where

|ulle = inf{||lz|; : u = Px}.

The dictionary seminorm || - || is typically small when
its argument has a good sparse approximation. For further
improvements on this estimate, see [20]. This bound is usually
superior to the exponential rate estimate, but it can be disap-
pointing for signals with excellent sparse approximations.
Subsequent work established that greedy pursuit produces
near-optimal sparse approximations with respect to incoherent
dictionaries [17], [21]. For example, if 3uk < 1, then

[7xll2 < V14 6k [lu — a2,

where aj denotes the best {» approximation of u as a linear
combination of k£ columns from ®. See [22], [23], [24] for
refinements.

Finally, we remark that, if ® is sufficiently random, then
OMP provably recovers sparse signals. See [25].

C. CoSaMP

Research on greedy pursuits has recently culminated in a
new algorithm, called CoSaMP, that offers optimal perfor-
mance guarantees. The method was designed for compressive
sampling, but it also offers attractive guarantees for classi-
cal sparse approximation problems. CoSaMP economizes on
matrix—vector multiplications, so it is most valuable when
these products can be computed efficiently [26]. A related
algorithm appears in [27].

Figure 2 contains a description of CoSaMP. The symbol
[], denotes the restriction of x to the r components largest
in magnitude, ties broken lexicographically.

To ensure that CoSaMP behaves well, we assume through-
out this section that the dictionary ® verifies the RIP (4) of
order 2s with constant §3; < 1. As noted, this hypothesis
holds for reasonable values of s when @ is incoherent or
suitably random. Of course, the algorithm can be applied
without the RIP, but its performance may be unpredictable.

In the implementation, it is important to use an iterative
algorithm to solve the least-squares problem in the estimation
step. The RIP ensures that these subproblems are always
well conditioned, so iterative methods converge quickly. As
a consequence, each outer iteration of the algorithm requires
at most a constant number of matrix—vector multiplications,

Fig. 2. Compressive Sampling Matching Pursuit (CoSaMP) variant

o Input. A signal u € R™, a matrix & € R™*YV,
sparsity parameter s
o Output. An s-sparse coefficient vector & € RY

1) Initialize. Set the initial coefficient vector &y = 0
and the residual 79 = u. Let k = 1.

2) Identify. Find 2s columns of ® that are most strongly
correlated with the residual:

[(Th—1,n)|.

Q) € arg min E
g |T|<2s neT

3) Estimate. Find the best coefficients for approximat-
ing the residual with the chosen columns:

yr = argminy ||rr_1 — Poyll2

4) Prune. Combine the old and new coefficient vectors
and retain the s largest components:

z=xp_1+yr and x = [2]s.
5) Iterate. Update the residual:
T = u — Pxy.

Repeat (2)—(5) until stopping criterion holds.
6) Output. Return = = xy.

and this cost dominates the computation. See Section I-E for
further discussion of this point.

Needell and Tropp demonstrate that each iteration of the
CoSaMP algorithm reduces the approximation error by a
constant factor until it approaches its minimal value. To be
specific, suppose the signal u = ®Px* + e for arbitrary
coefficient vector * and noise term e. If we run the algorithm
for a sufficient number of iterations, the output x satisfies

la* —z[l2 < Cs™' 22" — [&*]s 2]l + Cllell2,  (5)

where C' is a constant. No algorithm can produce an essentially
smaller error for general input signals.

This error bound allows us to develop stopping criteria
for CoSaMP that are tailored to the signals of interest. For
example, when the sorted entries of the coefficient vector
x* decay polynomially, it can be verified that the algorithm
requires only O(log N) iterations.

It is worth noting a strong similarity between CoSaMP and
iterative thresholding algorithms. See [28] for some related
results.

D. Commentary

Greedy pursuit methods have often been considered naive,
in part because there are contrived examples where the
greedy approach fails spectacularly. (See [1, Sec. 2.3.2] for
an exposition of this claim.) Recent research has vindicated
greedy pursuits by demonstrating that they succeed in many
of the situations where convex relaxation works. Still, it is
misleading to think of greedy methods and convex relaxation
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methods as distinct approaches to sparse approximation. In-
deed, the greedy selection technique is closely related to dual
coordinate ascent algorithms (see Section III-F). Similarly,
certain methods for convex relaxation, such as LARS [29]
and homotopy [30], use a type of greedy selection at each
iteration, which is based on the desire to solve an underlying
parametrized optimization problem.

Greedy pursuits and related methods (such as homotopy)
are sometimes quite fast, especially in the ultrasparse regime
in which the number of nonzeros in the representation is
very small. Greedy techniques can sometimes be applied to
situations in which convex relaxation cannot be used. For ex-
ample, when the dictionary contains a continuum of elements,
the greedy approach can reduce sparse approximation to a
sequence of simple one-dimensional optimization problems.

Another advantage of greedy methods is that they can
incorporate constraints that do not fit naturally into convex
programming formulations. For example, the data stream
community has proposed efficient algorithms for computing
near-optimal histograms and wavelet-packet approximations
from compressive samples [4]. More recently, it has been
shown that CoSaMP can be modified to enforce tree-like
constraints on wavelet coefficients; extensions to simultaneous
sparse approximation problems have also been developed [31].
This is an exciting and important line of work.

III. OPTIMIZATION

Another fundamental approach to sparse approximation
replaces the combinatorial ¢, function in the mathematical
programs from Subsection I-A with the ¢; norm, which yields
convex optimization problems that admit tractable algorithms.
In a concrete sense [32], the ¢1 norm is the closest convex
function to the ¢y function, so this relaxation is very natural.

The convex relaxation of the equality-constrained problem
becomes

mwin |lz]]1 subject to Px = wu, (6)

and the mixed formulation becomes
o1
min o |2 — ul + 7l )

Here, 7 > 0 is a regularization parameter whose value governs
the sparsity of the solution: large values typically produce
sparser results. It may be difficult to select an appropriate
value for 7 in advance, since it controls the sparsity indirectly.
As a consequence, we often need to solve (7) repeatedly
for different choices of this parameter, or even to trace the
complete path of solutions as 7 decreases toward zero. When
7 > ||®*ul| 0, the solution of (7) is = 0.

Another variant is the LASSO formulation [33], which first
arose in the context of variable selection:

min || ®x — u||3 subject to ||z||; < 3. 8)
The LASSO is equivalent to (7) in the sense the path of
solutions to (8) parameterized by positive 3 matches the

solution path for (7) as 7 varies. Finally, we note another
common formulation

min ||x||; subject to || Px — ulls <e )
€T

that explicitly parameterizes the error constraint.

A. Guarantees

It has been demonstrated that convex relaxation methods
produce optimal or near-optimal solutions to sparse approxi-
mation problems in a variety of settings.

The earliest results [13], [12], [21] establish that the
equality-constrained problem (6) correctly recovers all s-
sparse signals from an incoherent dictionary provided that
2us < 1. In the best case, this bound applies at the sparsity
level s ~ /m. Subsequent work [34], [35], [23] showed that
the convex programs (7) and (9) can identify noisy sparse
signals in a similar parameter regime.

The results described above are sharp for deterministic
signals, but they can be extended significantly for random
signals that are sparse with respect to an incoherent dictionary.
The paper [36] proves that that the equality-constrained prob-
lem (6) can identify random signals, even when the sparsity
level s has order m/logm. Most recently, the paper [37]
observed that ideas from [35], [38] imply that the convex
relaxation (7) can identify noisy, random sparse signals in a
similar parameter regime.

Results from [11], [39] demonstrate that convex relaxation
succeeds well in the presence of the RIP. For example, suppose
that the signal u = ®x* + e and the dictionary has RIP
constant do, < 1. Then the solution x to (9) verifies

lz — 2"l < Cs™V/2|l&* — [2*]slL + Ce,

provided that € > ||e]||2. Compare this bound with the result (5)
for CoSaMP.

Finally, let us mention an alternative approach for analyzing
convex relaxation algorithms that relies on geometric proper-
ties of the kernel of the dictionary [40], [41], [42].

B. Active Set / Pivoting

Pivoting algorithms explicitly trace the path of solutions
as the scalar parameter in (8) ranges over a set of values.
This approach relies on the fact that the solution to (8) is
a piecewise-linear function of 3, a consequence of the fact
that the optimality (KKT) conditions can be stated as a linear
complementarity problem. By referring to the KKT system,
we can quickly identify the next “breakpoint” on the solution
path—the closest value of 3 where the derivative of the
piecewise-linear function changes.

The homotopy method of Osborne, Presnell, and
Turlach [30] follows this approach. The algorithm starts
with 8 = 0, where the solution of (8) is identically zero,
and it progressively locates the next largest value of 5 where
a column enters or exits the active set. The efficiency of
the algorithm depends on updating and downdating a QR
factorization of the active columns. A similar method [29] is
implemented as SolveLasso in the SparseLab toolbox!.
Similar approaches can be developed for (7).

If we limit our attention to values of 3 where the number
of nonzero entries in  remains small, the active set approach

Uhttp://www.sparselab.stanford.edu
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is reasonably efficient. If we apply the homotopy method until
s nonzero components are identified, the workload consists of
approximately 2s matrix—vector multiplications by ® or ®*,
together with O(ms?) operations for updating the factorization
and performing other linear algebra operations. This cost is
comparable with OMP.

Indeed, OMP and homotopy are quite similar. In each case,
the set of nonzero components is refined by progressively
adding components and updating the solution of a reduced
linear least-squares problem. The criterion for selecting com-
ponents involves the inner products between inactive columns
of @ and the current residual u—®z. One notable difference is
that homotopy occasionally rejects columns that have already
been chosen. See [29], [43] for other comparisons.

C. Interior-Point Methods

Interior-point methods were among the first approaches
developed for solving sparse approximation problems by
convex optimization. The early algorithms [1], [44] apply
a primal-dual interior-point framework where the innermost
subproblems are formulated as linear least-squares problems
that can be solved with iterative methods. A crucial aspect
of this approach is that the algorithms take advantage of fast
matrix—vector multiplications. An implementation is available
as pdco and SolveBP in the SparseLab toolbox.

Other interior-point methods have also been proposed ex-
pressly for compressive sampling problems. The paper [45]
describes a primal log-barrier approach for a quadratic refor-
mulation of (7):

1
min 5”@:1: —ul|2+ 7172 subjectto —z <z < z.
T,z

The technique relies on a specialized preconditioner that al-
lows the internal Newton iterations to be completed efficiently
with CG. The method? is available as 11_1s. The £1-magic
package® [46] contains a primal log-barrier code for the
second-order cone formulation (9), which includes the option
of solving the innermost linear system with CG.

In general, interior-point methods are not competitive with
the gradient methods of Subsection III-D on problems with
very sparse solutions, and they do not benefit from warm
starts to the same extent as the other approaches in this
section. On the other hand, their performance is relatively
insensitive to the sparsity of the solution or the value of the
regularization parameter. Interior-point methods appear to be
more robust in the sense that there are few cases of very slow
performance or outright failure, which sometimes occurs with
other approaches.

D. Gradient Methods

Gradient descents, also known as first-order methods, are
iterative algorithms for solving (7) in which the major opera-
tion at each iteration is to compute gradient of the least-squares

2
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Fig. 3. Sparse Reconstruction via Separable Approximation (SpaRSA)

o Input. A signal u € R™, a matrix & € R™*YV,
regularization parameter 7 > 0, initial estimate xg
of the representation vector.

o Output. Coefficient vector x € RV

1) Initialize. Set £ = 1.

2) Iterate. Choose «y and obtain a:Z' from (10a). If an
acceptance test on :B;r is not passed, increase «y, by
some factor and repeat.

3) Line Search. Choose v, € (0,1] and obtain @y,
from (10b).

4) Test. If stopping criterion holds, terminate with =

xi41. Otherwise, set k < k + 1 and go to (2).

term at the current iterate, viz., ®*(®x) — u). Many of these
methods compute the next iterative oy using the rules

x; = argmin (z — xy)*®* (Pxy — u)

1
+§ak||z—:ck||§+7'||zH17 (10a)
Tpi1 = Tp + 'yk(wﬁ —Xp). (10b)

for some choice of scalar parameters a, and . Alternatively,
we can write the subproblem (10a) as

2

1
x, = argmin - ||z — (xk - — " ( Py — u))
z 2 (67 9
T
+ —1lzl- (1)
(675
Figure 3 specifies a representative algorithm, called

SpaRSA, that falls into the operator-splitting framework of
[47]. Other aliases include iterative splitting and thresholding
(IST) [48] and fixed-point iteration [49].

“Standard” convergence results for these methods, e.g.,
[47, Theorem 3.4], require that sup, oy > | ®*®|2/2, a
tight restriction that usually leads to slow convergence in
practice. The more practical variants described in [50] admit
smaller values of oy, provided that a sufficient decrease in the
objective in (7) occurs over a span of successive iterations.
One particular approach uses a Barzilai—-Borwein formula that
chooses a value of ay in the spectrum of ®*®. When a:; fails
the acceptance test in Step 2, the parameter «y, is increased
(repeatedly, as necessary) by a constant factor. Steplengths
v = 1 are used in [49] and [50].

Several variants of the SpaRSA have appeared. The “iterated
hard shrinkage” method of [51] sets apy = 0 in (10) and
chooses y; to do a conditional minimization along the search
direction. TWIST [52], a variant of IST that is significantly
faster in practice, deviates from the SpaRSA framework in that
the previous iterate x;_; also enters into the step calculation,
in the manner of successive over-relaxation approaches in
other areas of scientific computation. GPSR [53] is another
approach for solving (7) that can be viewed as a gradient-
projection algorithm for the convex quadratic program ob-
tained by splitting « into positive and negative parts.
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The SpaRSA approach works well on sparse signals when
® satisfies the RIP. For these problems, it tends to identify
the nonzero components of « quickly, after which the method
behaves essentially like an iterative least-squares method.
Because of the RIP, these final iterates converge quickly.
Computationally, these steps are quite similar to the estimation
step of CoSaMP.

When the solution of (7) is not particularly sparse or
the regularization parameter 7 is small, gradient approaches
may be ineffective, converging slowly or not at all. In this
setting, warm starts can vastly improve the behavior of these
approaches. That is, we can dramatically reduce the number
of iterations when the initial estimate xy in Step 1 is close
to the true solution. This observation motivates the design of
continuation strategies, in which we solve (7) for a decreasing
sequence of values of 7, using the approximate solution for
each value as the starting point for the next subproblem. It
is evident that continuation is related to pivoting strategies of
Subsection III-B that track individual changes in the active
components of x explicitly.

Some explicit continuation methods are described in [49],
[50]. Though adaptive strategies for choosing the sequence of
7 values have been proposed, the design of a robust, practical,
and theoretically effective continuation algorithm remains an
important open question.

E. Extensions of Gradient Methods

Second-order information can be used to enhance gradient
projection approaches by taking approximate reduced Newton
steps in the subset of components of x that appears to be
nonzero. In some approaches [53], [50], this enhancement is
made only after the first-order algorithm is terminated as a
means of removing the bias in the formulation (7) introduced
by the regularization term. Other methods [54] use second-
order information at intermediate steps of the algorithm, much
like two-metric gradient projection [55]. (A similar approach
was proposed for the related problem of ¢;-regularized logistic
regression in [56].) To compute the second-order components
of the steps, iterative methods can be used to find approximate
solutions to unconstrained least-squares subproblems involving
only the nonzero components of . These subproblems are, of
course, closely related to the ones that arise in the matching
pursuit algorithms of Section II.

A different type of gradient projection approach is described
by [57, Section 4], which considers the formulation (8). This
approach takes steps along the negative gradient of the least-
squares objective in (8), with steplength chosen by a Barzilai—
Borwein formula (with backtracking to ensure monotonicity)
and projects the resulting vector onto the constraint set ||z|; <
(. The ultimate goal in [57] is to solve (9) for a given value
of €. Then a scalar equation is solved to identify the value of
( for which the solution of (8) coincides with the solution of
(9) for the given e¢.

Finally, we mention that optimal gradient methods for
convex minimization [58], [59], [60] can be applied to solve
the formulation (7). These methods have many variants, but
they share the goal of finding an approximate solution that is

as close as possible to the optimal set (as measured by norm-
distance or by objective value) in a given budget of iterations.
(In contrast, standard methods aim to make significant progress
during each individual iteration.) Optimal gradient methods
typically generate several concurrent sequences of iterates, and
they have complex steplength rules that depend on some prior
knowledge, such as the Lipschitz constant of the gradient.
Specific works that solve (7) using optimal gradient methods
include the papers [61], [62].

The favorable asymptotic properties of optimal first-order
methods do not manifest themselves for problems with rela-
tively large values of 7 or with very sparse solutions. These
algorithms can be competitive with other gradient methods
when 7 is small, although the poor performance of methods
such as SpaRSA on such problems can be improved signifi-
cantly by the use of continuation.

Recently, Nemirovski and coworkers have proposed a tech-
nique for solving the formulation (9) by means of robust opti-
mal gradient algorithms for stochastic optimization [63]. This
approach interprets matrix—vector products as expectations of
a random variable. The method appears to be very effective
when the dictionary lacks a fast multiply.

F. Dual-Based Algorithms

Greedy pursuit methods are strongly connected with a dual
formulation of the problem (7):

min gHaH% —uTo subjectto —1<®*c<1. (12)

An active-set method for this formulation [64] solves a se-
quence of subproblems where a subset of the constraints
(corresponding to a subdictionary) is enforced. By converting
back to the primal, these subproblems can each be expressed as
a least-squares problem over this subdictionary. Typically, the
subdictionaries differ by a single column from one problem to
the next. These approaches have not been explored extensively
in the optimization literature.

IV. HORIZONS

Test problem collections representative of sparse approxi-
mation problems encountered in practice are crucial to guiding
further development of sparse reconstruction algorithms. Most
algorithmic papers report results only on synthetic test cases.
The most significant effort in this direction to date is Sparco
[65], a Matlab environment for interfacing algorithms and
constructing test problems that also includes a variety of
problems gathered from the literature.

Many of the algorithms we describe in this paper lend
themselves well to implementation on commodity graphi-
cal processing units (GPUs), for certain matrices ®. This
inexpensive hardware allows remarkable increases in speed
over conventional CPU implementations, for certain kinds
of compute-intensive, multithreaded numerical computations.
For sensing matrices consisting of randomly selected rows of
the discrete cosine transformation, an implementation of the
SpaRSA strategy is described in [66]. Availability of a GPU
implementation of the FFT is crucial to the success of this
approach. Multicore and GPU implementations of first-order
methods are described also in [67].
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